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Abstract

Protein–RNA interactions play essential roles in a wide variety of biological pro-

cesses. Recognition of RNA-binding residues on proteins has been a challenging

problem. Most of methods utilize the position-specific scoring matrix (PSSM). It has

been found that considering the evolutionary information of sequence neighboring

residues can improve the prediction. In this work, we introduce a novel method SNB-

PSSM (spatial neighbor–based PSSM) combined with the structure window scheme

where the evolutionary information of spatially neighboring residues is considered.

The results show our method consistently outperforms the standard and smoothed

PSSM methods. Tested on multiple datasets, this approach shows an encouraging

performance compared with RNABindRPlus, BindN+, PPRInt, xypan, Predict_RBP,

SpaPF, PRNA, and KYG, although is inferior to RNAProSite, RBscore, and aaRNA. In

addition, since our method is not sensitive to protein structure changes, it can be

applied well on binding site predictions of modeled structures. Thus, the result also

suggests the evolution of binding sites is spatially cooperative. The proposed method

as an effective tool of considering evolutionary information can be widely used for

the nucleic acid–/protein-binding site prediction and functional motif finding.
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1 | INTRODUCTION

Protein–RNA interactions play critical roles in a wide variety of biolog-

ical processes.1 Reliable identification of RNA-binding residues on

proteins is an important and challenging problem, which is critical for

understanding protein–RNA recognition mechanisms, and helpful for

complex structure prediction and drug design.

Many predictors based on sequence and structure have been

developed and reviewed in literatures over the past several years.2

The protein sequence evolutionary information is a very effective

feature for binding site prediction.3 The Position-Specific Scoring

Matrix (PSSM), a common representation of evolutionary features,

has been widely used in most of the predictors.2 Murakami et al

presented a support vector machine (SVM) classifier (PiRaNhA) that

utilizes the standard PSSM combined with physical and chemical

properties of residues to predict RNA-binding residues.4 Since sur-

rounding residues of binding sites usually affect the binding process,

it is necessary to incorporate the evolutionary information of the

considered site and its surrounding ones. Thus, EL-Manzalawy

adopted a sliding sequence window (size of 25) scheme to encode

the evolutionary information of the target residue, achieving a

higher Matthews correlation coefficient (MCC) compared with some

other state-of-the-art predictors.5 Cheng et al made a smooth

processing (called smoothed PSSM) before coding the evolutionary

information in a sliding window form,6 in which the evolutionary

score for a residue position is replaced by the sum of evolutionary

scores of its seven neighboring residues in sequence. This method

achieves an evident improvement in binding site prediction. From
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the above, most of the methods prefer to utilize a sliding window

along sequence to represent the evolutionary characteristic of the

central residue. However, we think considering the features of spa-

tial neighbors of a target residue will get a better effect than that of

sequence neighbors in binding site prediction.

In previous works, researchers have tried to consider the spatial

neighbor features of a target residue in prediction. Wang et al used

residue spatial sequence profile to predict binding sites in protein–

protein heterocomplexes.7 Chen et al integrated spatial adjacent resi-

due information and structure information for RNA-binding residue

prediction.8 Tang et al utilized sequence and structure characteristics

encoded in a structural window to predict RNA-binding residues.9

Studies have shown the conserved interface residues often occur

clustered together in tertiary structures.10 This tendency holds true

for protein–protein/nucleic acid interactions.11,12 The higher packing

density of conserved residues at interfaces and within enzyme active

sites may suggest their cooperativity in function exertion.10 That the

conserved residues form one or more localized clusters within inter-

faces or tertiary structures will facilitate the formation of some “func-
tional motifs.” Thus, based on the above, we think the PSSM profile

encoded in a form of spatial neighbors can better reflect the evolu-

tionary characteristics of interface conserved residues than that

encoded in a form of sequence neighbors.

In this paper, we propose a new coding scheme of PSSM profile

based on the spatially neighboring residues to predict RNA-binding

residues. A smooth processing of PSSM profile is introduced into the

method. As an application, it is implemented to predict RNA-binding

sites on proteins.

2 | MATERIALS AND METHODS

2.1 | Protein–RNA datasets

In this work, we used benchmark dataset RB1983 as training set and

RB4413 as test set, respectively. In order to compare our method with

the other ones, we used benchmark dataset RB1115 as an indepen-

dent verification set.

(1) RB198

The data in RB198 were derived from the Protein Data Bank

(PDB) by picking up all protein–RNA complexes14 and then removing

the complexes that meet any one of the following: (i) structure resolu-

tion worse than 3.5 Å; (ii) protein residues <40 or RNA nucleotides

<5; (iii) interface residues <3; and (iv) protein sequence identity >30%

with others. The RB198 dataset obtains 134 complexes with 198 pro-

tein chains.

(2) RB44

RB44 dataset contains 44 protein chains that have at most 40%

sequence identity.3,13

(3) RB111

RB 111 has 111 protein chains that share less than 30% sequence

similarity with those in RB44.15

For all the datasets, an interface residue is defined as the one

where at least one atom is closer than 5 Å to any atom of RNA.

Table S1 provides the data information.

2.2 | Spatial neighbor–based position-specific
scoring matrix (SNB-PSSM)

In order to consider the evolution of surrounding residues around a

target one, we propose a new spatial neighbor–based PSSM (SNB-

PSSM) method that is different from the smoothed PSSM mentioned

above.

In SNB-PSSM, first, for a protein sequence, a standard PSSM pro-

file is generated by PSI-BLAST16 against the nonredundant

(nr) protein sequence database through three iterations with 0.001 as

E-value cutoff. For a protein with N residues, the size of PSSM matrix

is 20 × N with the evolutionary information for each position encap-

sulated in a vector of 20 dimensions. Then, the evolutionary score of

a target residue is defined as an average value of the evolutionary

scores from the standard PSSM over the residues whose Cα atoms

are within 7.5 Å from that of the target one. Figure 1 illustrates the

definition process.

2.3 | Evolutionary information encoded in a sliding
structure window form

For a protein structure, after its SNB-PSSM profile is obtained, the

evolutionary information of a target residue is encoded using the evo-

lutionary scores (from SNB-PSSM) of the spatially nearest w residues

(a sliding structure window of size w) to the target one (including the

target one). Thus, for a target residue, its evolutionary information is

encoded into a 20 × w matrix.

2.4 | Support vector machine (SVM) classifier

Support vector machine17 is used as the classification method. The

package LIBSVM (version 3.0. http://www.csie.ntu.edu.tw/�cjlin/

libsvm/) is used, and the radial basis function (RBF) is chosen as the

kernel function. The regularization parameter C and kernel width

parameter γ are optimized until an optimal SVM model is obtained.

2.5 | Performance evaluation

Our method is trained through fivefold cross validation on RB198

dataset, tested on RB44 dataset, and compared with other methods

on the independent dataset RB111. We assess the performance of

classifiers using the overall accuracy (ACC), sensitivity (SN), specificity

(SP), and Matthews correlation coefficient (MCC) that are defined as

follows:
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ACC =
TP+ TN

TP+ FP+ TN+ FN

SN=
TP

TP+ FN

SP=
TN

TN+ FP

MCC =
TP×TN−FP× FN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TN+ FNð Þ TN+ FPð Þ TP+ FNð Þ TP+ FPð Þp

where the true positive (TP), false positive (FP), true negative (TN), and

false negative (FN) are obtained by comparing the predicted label for

each residue with the actual one.

3 | RESULTS AND DISCUSSION

3.1 | Prediction effectiveness of SNB-PSSM

In order to examine the capabilities to identify RNA-binding sites of

the three types of PSSMs: standard PSSM, smoothed PSSM, and

SNB-PSSM, fivefold cross-validation was used to train them on

RB198 dataset (Table S2), and then the tests were performed on

RB44 dataset (Table S3). From Table S3, SNB-PSSM attains an overall

accuracy of 0.70, higher than 0.67 and 0.62 by the standard and

smoothed PSSMs, respectively. Moreover, SNB-PSSM achieves

improvements of 39% and 19% in MCC compared with the two

PSSMs, respectively, and meanwhile, it also acquires the highest spec-

ificity although it does not reach the highest sensitivity.

Next, we want to detect the effects of encoding schemes on pre-

diction results. Three encoding ways were constructed: the standard

and smoothed PSSMs with a sliding sequence window of size

7, respectively, and the SNB-PSSM with a sliding structure window of

the same size. Their performances were tested on RB44 dataset, with

the results listed in Table S4. From Table S4, the SNB-PSSM-based

way achieves the highest SP, ACC, and MCC with the values 0.75,

0.69, and 0.34, respectively.

In order to optimize the performance of the SNB-PSSM-based

structure window method, the size of window needs to be set prop-

erly. Through comparing the performances (Tables S5 and S6) of dif-

ferent structure window size sets, 25 was selected as the final size.

The results above indicate it is more effective to consider the

evolutionary information in a form of spatial neighbors than to con-

sider it in a form of sequence neighbors for binding site prediction.

3.2 | Comparison with existing protein–RNA
interface prediction methods

About the idea of spatial neighbors, it has been provided by previous

works. In the work of Wang et al7/Chen et al,8 a profile of a target

residue is produced based on the HSSP database18/PSSM and is

encoded into a vector of 20 × 11/20 × 15 elements where a window

of 11/15 spatially neighboring residues is adopted. Chen et al applied

their residue profile SpaPF to RNA-binding site prediction. Different

F IGURE 1 Process of computing the evolutionary score of a target residue in SNB-PSSM method. (A) The residue 50s spatially neighbors
(3, 4, 5, 6, 7, and 15) whose Cα atoms are within 7.5 Å from its Cα atom. (B) The evolutionary score of residue 5 is defined as an average score of
evolutionary scores (a vector of 20 dimensions) from the standard PSSM over its spatially neighbors 3, 4, 5, 6, 7, and 15
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from the above methods, here a spatial neighbor-based smooth

processing is performed based on the PSSM before encoding evolu-

tionary information with a structure window scheme, and additionally,

the structure window size 25 is adopted through an optimizing pro-

cess, which both contribute the improvement of our method com-

pared with SpaPF (Table 1). In addition, PSSM (internally computed by

PSI-BLAST) is better than HSSP (based on precomputed multiple

alignments) mainly because of the former's better quality of the

sequence alignments.19

Additionally, our method was compared with the four sequence-

based prediction servers (FastRNABindR,5 RNABindR v2,3 BindN+20

and PPRInt21), and the two structure-based ones (KYG22 and PRIP23)

on the independent test set RB111, with the results shown in Table 1.

Table S7 gives the descriptions on the servers. From Table 1, our

method attains the highest ACC, SP, and MCC of 0.85, 0.88, and 0.26,

respectively. Its sensitivity is not as good as some prediction servers.

For an imbalanced data, MCC is often considered as a more balanced

evaluation of performances.24 Next, we detected our method's per-

formances on four categories of protein chains with different lengths

(short, medium, medium long, and long), with the results displayed in

Table S8 (Table S9 for details). The results show it consistently out-

performs FastRNABindR, RNABindR v2, and SpaPF (available severs

or programs) for all categories, and with the increase of sequence

length, the improvement has a more evident tendency, especially

compared with FastRNABindR, which we think mainly attributes to its

consideration of spatially neighbor information as the binding sites of

longer chain proteins are more likely composed of the residues far

away in sequence.

For better benchmarking, we compared our method's perfor-

mance with those of the five sequence-based methods

RNABindRPlus,20 BindN+, PPRInt, xypan,25 and Predict_RBP,26 and

six structure-based ones SpaPF, RBscore,27 RNAProSite,28 aaRNA,29

PRNA30 and KYG on datasets RNABindR_R106, PRNA_R205,

SRCPred_R160, aaRNA_R205, RBscore_R116, RNABindR_R111, and

aaRNA_R67 which are some relatively big datasets in NBench

website,31 and the results (MCC) are shown in Table 2. Generally, the

predictive ability of a method is always assessed by the lowest accu-

racy on all the datasets rather than the best or average accuracy.32

Thus, using the lowest MCC to compare the programs, from Table 2,

our method is better than all of the five sequence-based approaches.

Additionally, compared with the six structure-based methods, our

method presents a stronger power than SpaPF, PRNA and KYG and is

inferior to RNAProSite, RBscore, and aaRNA. From the above, gener-

ally our method has a few advantages to some extent, especially com-

pared with the sequence-based methods. In the future, it is desirable

TABLE 1 Performance comparison of our method with the other
seven methods on RB111 dataset

Methods SN SP ACC MCC

Sequence-based methods

FastRNABindR 0.61 0.76 0.75 0.24

RNABindR v2 0.63 0.73 0.72 0.22

BindN+ 0.43 0.87 0.84 0.24

PPRInt 0.48 0.79 0.76 0.18

Structure-based methods

SpaPF 0.42 0.86 0..82 0.21

KYG 0.47 0.80 0.78 0.19

PRIP 0.45 0.78 0.75 0.15

Our method (on experimental

structures)

0.44 0.88 0.85 0.26

Our method (on modeled structures) 0.43 0.87 0.85 0.25

TM-score < 0.5 0.43 0.86 0.84 0.23

0.5 ≤ TM-score < 0.7 0.43 0.87 0.85 0.25

TM-score ≥ 0.7 0.45 0.87 0.86 0.26

TABLE 2 Prediction performances (MCC) of our method and other sequence-based and structure-based ones on seven datasets

Methods RNABindR_R106 PRNA_R205 SRCPred_R160 aaRNA_R205 RBscore_R116 RNABindR_R111 aaRNA_R67

Sequence-based methods

RNABindRPlus 0.78 0.66 0.68 0.61 0.42 0.24 0.34

BindN+ 0.36 0.32 0.36 0.32 0.23 0.24 0.20

PPRInt 0.51 0.42 0.47 0.38 0.22 0.19 0.28

xypan 0.76 0.78 0.71 0.59 0.31 0.25 0.21

Predict_RBP 0.70 0.63 0.68 0.48 0.18 0.03 0.05

Structure-based methods

SpaPF 0.69 0.51 0.41 0.39 0.32 0.21 0.23

RBscore 0.44 0.40 0.44 0.44 0.34 0.37 0.48

RNAProSite 0.56 0.52 0.52 0.57 0.43 0.38 0.35

aaRNA 0.50 0.46 0.48 0.48 0.38 0.34 0.42

PRNA 0.74 0.82 0.67 0.50 0.23 0.19 0.18

KYG 0.33 0.29 0.32 0.32 0.25 0.20 0.29

Our method 0.80 0.64 0.48 0.45 0.37 0.26 0.32
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to further discuss the combination of SNB-PSSM with sequence-

based and structure-based features for protein-RNA binding site

prediction.

3.3 | Case studies with our method

Taking two cases from RB111, for example, we give the detailed per-

formance of our method. The first is an RNA-binding protein “cyto-
toxic domain of colicin E3” (PDB ID: 2XFZ:Y).33 Our method predicts

27 binding residues correctly with SN, SP, ACC, and MCC of 0.79,

0.76, 0.77, and 0.54, respectively (see Figure 2C). As a comparison,

we give the prediction by the standard PSSM-based method and the

smoothed one (window size of 25). In contrast, 20 and 25 binding res-

idues are identified correctly, respectively, with SN, SP, ACC, MCC of

0.59, 0.65, 0.63, 0.23 for the former (see Figure 2A) and 0.74, 0.54,

0.61, 0.26 for the latter (see Figure 2B). The second is a ternary

NusB-NusE-BoxA RNA complex.34 Our method was performed on

the RNA-binding protein NusB (PDB ID: 3R2C:A) which has 38 binding

residues. Our method predicts 33 correctly (with SN, SP, ACC, MCC of

0.87, 0.72, 0.76, 0.53) (see Figure 2F), while it is 25 for the standard

PSSM-based method (with 0.66, 0.70, 0.69, 0.33) (see Figure 2D) and

36 for the smoothed one (0.95, 0.51, 0.63, 0.42) (see Figure 2E).

From Figure 2, our method achieves the highest ACC and MCC

values. Also, it can be seen the false-positive residues from our

method are more clustered spatially around the predicted true posi-

tive sites than those from the other two PSSM-based methods. It is

understandable because the spatially neighbors have similar evolu-

tionary information encodings in our method, and therefore they are

more likely predicted as the same results, while these residues are

probably far away from each other in sequence, and thus their

encodings will be largely different in the two methods, leading to dif-

ferent prediction results.

3.4 | Binding site prediction on unbound proteins

In actuality, we need to make predictions on unbound protein struc-

tures. Figure 3 shows an example of prediction with our method on

the unbound structure (PDB ID: 3SXL:A) and bound one (PDB ID:

1B7F:A) of an RNA-binding protein “Drosophila melanogaster sex-

lethal protein.”35 From Figure 3, the conformational changes happen

mainly on the RNA-binding interface, and the two structures' root

mean square deviation (RMSD) of backbone atoms is relatively large

with the value 6.7 Å ranked fifth out of 71 structures in bench-

mark1.0.36 From Figure 3A, the prediction result on the unbound is

satisfactory with SN, SP, ACC, and MCC of 0.42, 0.89, 0.82, and 0.30,

respectively, although the evaluation has a drop compared with that

on the bound one with SN, SP, ACC, and MCC of 0.75, 0.78, 0.78,

and 0.41 (see Figure 3B). Similarly, the predicted false-positive resi-

dues of the two structures are all nearby the true binding sites.

3.5 | Binding site prediction on the modeled
structures

We want to know our method's performance on modeled structures.

We conducted structure modeling with I-TASSER method (threading

F IGURE 2 Predictions of RNA-binding residues on proteins with the standard PSSM– and smoothed PSSM–based sequence window, and
the SNB-PSSM–based structure window methods, respectively. (A) (B) and (C) RNA binding protein “cytotoxic domain of colicin E3” (PDB ID:
2XFZ:Y). (D) (E) and (F) RNA-binding protein NusB in the ternary NusB-NusE-BoxA RNA complex (PDB ID: 3R2C:A). The TP, FP, and FN results
are shown in green, red, and marine, respectively
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based) developed by Zhang's lab that performs pretty well even on

the new fold targets37 and binding site prediction for all cases in

RB111, with the results shown in Figure S1 and Table 1. In modeling,

all the templates with sequence identity >30% to the query one are

excluded from the template library. From Figure S1, most of the

models (84.7%) have a TM-score38 above 0.5, and the average value

F IGURE 3 Prediction of RNA-binding residues for protein “Drosophila melanogaster sex-lethal protein” by our method on the unbound structure
(PDB ID: 3SXL:A (A), and on the bound one (PDB ID: 1B7F:A) (B). The TP, FP, and FN results are shown in green, red, and marine, respectively

F IGURE 4 Predictions of RNA-binding residues with our method on the modeled structure and experimental one, respectively. (A) and
(B) RNA binding protein SRP “the ribonucleoprotein core of the E. coli signal recognition particle.” (C) and (D) RNA-binding protein “trp RNA-
binding attenuation protein.” The TP, FP, and FN results are shown in green, red, and marine, respectively
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is 0.66. As commonly, the I-TASSER models with TM-score ≥0.5 are

considered to be correct folds, we split the models into three groups

with TM-score <0.5, 0.5 ≤ TM-score < 0.7, and TM-score ≥ 0.7,

respectively. For binding site prediction, only the sequence informa-

tion is used. From Table 1, as a whole, our method obtains almost the

same results on the modeled structures as those on the experimental

ones. Additionally, with the elevation of the quality of modeled struc-

tures, our method's performance has a slight improvement in terms of

SN and MCC indexes.

In the following, we give our method's performances on the two not

well-constructed models. One is the RNA-binding protein SRP “the ribo-

nucleoprotein core of the E. coli signal recognition particle” (PDB ID:

1DUL:A).39 The constructed structure is of TM-score = 0.50,

RMSD = 1.8 Å. Compared with the prediction result on the modeled

structure with SN, SP, ACC, andMCC of 0.46, 0.82, 0.73, and 0.26, respec-

tively (Figure 4A), the prediction on the experimental one has SN, SP,

ACC, andMCC of 0.38, 0.75, 0.67, and 0.12, respectively (see Figure 4B).

The second is the RNA-binding protein “trp RNA-binding attenu-

ation protein” (PDB ID: 1C9S:S).40 The constructed structure is of

TM-score = 0.35, RMSD = 10.4 Å. Figure 4C shows the prediction

result on it with SN, SP, ACC, and MCC of 0.44, 0.95, 0.89, and 0.44,

respectively, and Figure 4D shows that on the experimental one with

SN, SP, ACC, and MCC of 0.56, 0.74, 0.71, and 0.21, respectively.

From the above, it can be concluded that the correct folds of

modeled structures are helpful to binding site prediction. In addition,

our method has a good robustness against the structural variations as

long as residue positions are approximately correct, which is mainly

because our method is at a coarse-grained level, not very sensitive to

the refined three-dimensional structures.

4 | CONCLUSIONS

We propose a new encoding scheme SNB-PSSM to incorporate evo-

lutionary information of spatially neighbors of a target one and apply

it to the prediction of RNA-binding sites on proteins. The test on

RB44 dataset demonstrates SNB-PSSM method achieves an improve-

ment compared with standard and smoothed PSSMs with MCC

increasing by 39% and 19% and ACC increasing by 4% and 13%,

respectively. Using a sliding window encoding scheme, the SNB-

PSSM-based structure window method performs better than the stan-

dard PSSM– and smoothed PSSM– based sequence window methods,

respectively. Additionally, the tests on multiple datasets indicate our

method is superior to many classic methods that use PSSM profile,

physical and chemical properties, or structure-based features to some

extent.

In addition, our method is not sensitive to protein structural

changes and has a good robustness against the structural variation,

which enables our method to be applied on binding site predictions

for modeled structures. This work demonstrates considering evolu-

tionary information of spatially neighboring residues can significantly

improve RNA-binding site predictions and suggests binding sites evo-

lve spatially cooperatively to some extent. We believe the proposed

method if combined with other sequence-, structure-, and dynamics-

derived features can be better used for the predictions of nucleic

acid–/protein-binding sites, catalytic sites, and hot spots.

The source code of SNB-PSSM can be freely downloaded at

https://github.com/ChunhuaLiLab/SNB_PSSM.
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